Length scale heterogeneity in lateral gradients of poly(N-isopropylacrylamide) polymer brushes prepared by surface-initiated atom transfer radical polymerization coupled with in-plane electrochemical potential gradients.

نویسندگان

  • Xuejun Wang
  • Huilin Tu
  • Paul V Braun
  • Paul W Bohn
چکیده

We report the preparation and characterization of poly(N-isopropylacrylamide) (PNIPAAm) polymer brushes exhibiting controlled lateral variations in the patchiness of polymer chains. These gradients were achieved through an atom transfer radical polymerization (ATRP) grafting-from approach utilizing surfaces on which the spatial profile of the initiator density was carefully controlled. Initiator density gradients were formed on Au by first preparing a hexadecanethiol (HDT) density gradient, by reductive desorption using a laterally anisotropic electrochemical gradient. The bare areas in the original HDT gradient were then back-filled with a disulfide initiator, (BrC(CH3)2COO(CH2)11S)2. The initiator coverage was characterized by X-ray photoelectron spectroscopy (XPS). Then, surface-initiated ATRP was utilized to transfer the initiator density gradient into gradients of PNIPAAm chain density. Ellipsometry, surface plasmon resonance (SPR), and atomic force microscopy (AFM) were used to characterize these PNIPAAm density gradients. The defining characteristic of the PNIPAAm gradients is the evolution of the morphology from discontinuous mushroom structures at extremely low grafting densities to heterogeneous patchy structures at intermediate grafting densities. The size of the patchy domains gradually increases, until at a high grafting density region, the morphology evolves to a smoother, presumably more extended, structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications

The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...

متن کامل

Surface-initiated Atom Transfer Radical Polymerization and Solution Intercalation Methods for Preparation of Cellulose-G-PS-G-PAN/MMT Bionanocomposite

Cellulose was modified by polystyrene (PS) and polyacrylonitrile (PAN) via free radical and living radical polymerization, and then cellulose was used as the matrix in the preparation of polymer/clay nanocomposite, through a solution intercalation method. For this purpose, first, the graft polymerization of styrene (St) onto cellulose fibers was performed by using suspension polymerization and ...

متن کامل

Patterned poly(N-isopropylacrylamide) brushes on silica surfaces by microcontact printing followed by surface-initiated polymerization.

Patterned poly(N-isopropylacrylamide) (PNIPAAm) brushes were fabricated on oxidized silicon wafers by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide from a micropatterned initiator. The patterned surface initiator was prepared by microcontact-printing octadecyltrichlorosilane and backfilling with 3-(aminopropyl)triethoxysilane followed by amidization with 2-brom...

متن کامل

Synthesis of Environmentally Responsive Polymers by Atom Transfer Radical Polymerization: Generation of Reversible Hydrophilic and Hydrophobic Surfaces

Environmentally responsive poly(N-isopropylacrylamide) brushes were grafted from the surface of polymer particles or flat surfaces in order to generate reversible hydrophilic and hydrophobic surfaces. The use of atom transfer radical polymerization was demonstrated for the grafting of polymer brushes as it allows efficient control on the amount of grafted polymer. The polymer particles were gen...

متن کامل

Thermosensitive Nanocables Prepared by Surface-Initiated Atom Transfer Radical Polymerization

Thermosensitive nanocables consisting of Au nanowire cores and poly(N-isopropylacrylamide) sheaths (denoted as Au/PNIPAAm) were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP). The formation of PNIPAAm sheath was verified by Fourier transform infrared (FTIR) and hydrogen nuclear magnetic resonance ((1)H NMR) spectroscopy. Transmission electron microscope (TEM) re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2006